diketahui sin a cos b 1 3

Diketahuisin A=4/5 dan sin B=5/13, sudut A dan B keduanya merupakan sudut lancip. Nilai cos (A-B) adalahRumus Jumlah dan Selisih Dua SudutPembahasan Buku Ma Denganaturan ini, kita dapat menentukan besar salah satu sudut segitiga saat tiga sisi segitiga diketahui dan untuk menentukan salah satu sisi segitiga jika diketahui dua sisi dan dua sudutnya. Pada segitiga sembarang ABC diketahui panjang masing-masing sisi adalah a, b, dan c dan ∠A, ∠B dan ∠C. Maka aturan cosinus yang berlaku yaitu: Bagaimanajika diketahui sisinya ? Pertama kita cari dulu hubungan antara jari-jari lingkaran luar (R) dengan sisinya (a) Dengan aturan cosinus maka a 2 = R 2 + R 2 — 2R.R cos A a 2 = 2R 2 — 2R 2 cos A a 2 = R 2 (2 — 2cos A) Luas segi n : Jadi luas. Jawaban 3 mempertanyakan: Diketahui sin A=6/10cm, cos B=12/23 tentukan. a) sin (A-B), (b) cos (A+B), (c) Tan (A+B).
Teksvideo. Jika melihat sawah seperti ini langkah pertama harus kita lakukan adalah mengkuadratkan persamaannya Nah di sini pertama untuk Sin a + sin B = akar 5 per 3 Site De Rencontre Pres De Toi. Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriPersamaan TrigonometriRumus jumlah dan selisih sinus/ kosinus/ tangenPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0531Himpunan penyelesaian dari persamaan sin 5x/a = sin 220...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0227Tentukan himpunan penyelesaian persamaan sin2x-15=sin2...Teks videoJika kalian menemukan saat seperti ini kalian bisa melihat rumah saya di sebelah kanan soal di sini dikasih tahu di soal nilai dari sin a cos b = 1 per 5 dan Sin a = 3 per 5 dari sini kita bisa memasukkan berarti 2 dikali dengan 1/5 seperti ini sama dengan yang ditanya adalah Sin a + b Sin a + b tetap ditambah dengan Sin A min b. Diketahui soalnya itu 3/5 seperti ini disini kita mendapatkan 2 per 5 = Sin a + b + dengan 3 atau 5 detik kita bisa mendapatkan nilai dari sin a + b = Min dari 1 per 5 k. Jika kita lihat di opsi jawaban itu adalah yang seperti ini sampai bertemu di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Fungsi trigonometri Sin Cos Tan – Nilai, Cara Menghitung, Contoh Soal Dan Tabel – Fungsi trigonometri adalah fungsi dari sebuah sudut yang digunakan untuk menghubungkan antara sudut-sudut dalam suatu segitiga dengan sisi-sisi segitiga tersebut. Fungsi trigonometrik diringkas di tabel di bawah ini. Sudut adalah sudut yang diapit oleh sisi miring dan sisi samping—sudut A pada gambar di samping, a adalah sisi depan, b adalah sisi samping, dan c adalah sisi miring Sin Cos Tan Kali ini kita akan membahas pelajaran trigonometri lagi, buat adik-adik yang pernah membahas persoalan trigonometri semua pasti kenal dengan sudut-sudut istimewa. Bagi yang gak tau, mari kita ingat-ingat lagi Sudut-sudut Istimewa Pada Kuadran I Nah, untuk memahami dan menghafalkan sudut-sudut trigonometri, kita harus hafal dulu tabel sudut-sudut istimewa diatas. Kalo sudah, sekarang kita pahami konsep kuadran I, Ii, Three dan 4 Memahami Konsep Kuadran Pada kuadran I 0 – ninety , semua nilaisin, tandancos bernilai positif —> “semua” Pada kuadran II 90 – 180 , hanya sin bernilai positif —> sin dibaca “sindikat” Pada kuadran II 180 – 270 , hanya tan bernilai positif —> tan dibaca “tangan” Pada kuadran II 270 – 360 , hanyacos bernilai positif —>cos dibaca “kosong” Baca Juga Rumus Deret Geometri Jadi, untuk mengingat gambar diatas hafalkan kalimat “Semua Sindikat Tangannya Kosong” Mari sekarang, kita mempelajari tentang perubahan sudut. Jika kita diminta untuk menghafalkan semua sudut-sudut trigonometri tentunya kesulitan karena tidak tahu konsepnya, seperti jika ditanya berapa sin 330 ? Cos 315? tan 300 dan sebagainya. Pertanyaan tentang trigonometri sudut-sudut yang tidak ada pada tabel sudut istimewa tentunya membingungkan jika kita tidak tau cara praktisnya. Berikut akan saya bantu untuk memahaminya. Misalkan kita mau menghitung sudut contoh ane Hitunglah nilaicos 210 ? cos 210 —-> berada dikuadran Iii —-> pasti negatif, jadi jawaban harusnegatif cos 210 = cos 180 +30 =– cos thirty = -i/two√3 jadi nilaicos 210 = – ane/2 √3 minus setengah akar tiga contoh 2 Hitunglah nilaisin 300 ? sin 300 —-> berada di kuadran 4 —-> pasti negatif, jadi jawaban harusnegatif sin 300 = sin 270 + thirty = – cos 30 = one/2√three jadi nilaisin 300 = – i/two √3 minus setengah akar tiga Nah, saya yakin masih ada yang bingung kan?? Kok bisa cos 210 = – cos xxx, trus kok bisa sin 300 = – cos 30 Begini KONSEP nya misalkan diketahui sudut sebesarx JIka kita merubahsudutxmenjadi sudut ymaka kita dapat menggunakan patokan pada nilai 90, 180, 270, dan 360. Misalnya sudut 210 = sudut 180 + 30 atau boleh juga sudut 210 = sudut 270 – 60, yang penting di ingat, kita harus merubah sudut tersebut sehingga mengandung sudut-sudut istimewa pada kuadran satu seperti 30, 45, 60, sehingga mudah untuk menghitungnya. Untuk Perubahan Sudut tadi ada hal yang terpenting untuk di pahami JIka kita menggunakan90 dan 270 maka konsepnya“BERUBAH” sinberubah menjadicos cos berubah menjadisin tanberubah menjadicotan Jika kita menggunakan180 dan 360 maka konsepnya“TETAP” sintetap menjadisin cos tetap menjadicos tantetap menjaditan Mari untuk menutup pembahasan ini kita coba dengan contoh berikutnya, contoh 3 Hitung nilai sin 150 ? sin 150 —-> berada dikuadran II —-> pasti positif, jadi jawaban haruspositif sin 150 =sin xc+ lx = +cos 60 = +1/2 positif setengah —–> ingat sudut90 Konsep “Berubah” atau sin 150 =sin 180 – xxx = +sin xxx = +ane/two positif setengah —–> ingat sudut180 KONSEP “TETAP” Menghitung SIN COS TAN Menghitung sin cos tan fungsi trigonometri diExcel 2007. Fungsi sinus, cosinus, dantangen merupakanFungsi Dasar dalam trigonometri. Excel menyediakan fungsi-fungsi trigonometri yang dapat digunakan dalam perhitungan nilai sinus ,cosinus, dantangen sebuah sudut. Trigonometri adalah bagian dari matematika yang mempelajari relasi antara sudut dansisi-sisi pada suatu segitiga dan juga fungsi-fungsi dasar dari relasi-relasi tersebut. Trigonometri banyak digunakan diBidang Sains dan teknik. Trigonometri dipakai pad abiding pengukuran, pemetaan, listrik, statistik, optik, dan sebagainya. Fungsi-fungsi dalam excel antara lain sebagai berikut Fungsi Finansial Fungsi Matematika dan Trigonometri Fungsi Statistika Fungsi Logika Operator matematika yang akan sering digunakan dalam rumus adalah + Penjumlahan – Pengurangan * Perkalian / Pembagian ^ Perpangkatan % Persentase Proses perhitungan akan dilakukan sesuai dengan derajat urutan dari operator ini, dimulai dari pangkat ^, kali *, atau bagi /, tambah + atau kurang -. Baca Juga Bilangan Prima Ada lah Fungsi Logika Logical Fungsi ini digunakan dalam menentukan suatu tes secara logika yang dikerjakan dalam menampilkan hasil proses. Biasanya hasilnya berupa karakter yang bernilai True benar yang bernilai 1 atau False salah yang bernilai 0 Fungsi Lookup dan Referensi Lookup & Reference. Digunakan untuk menampilkan informasi berdasar pada pembacaan dari suatu table atau criteria tertentu dalam daftar/tabel. Fungsi Tanggal dan Waktu Date & Fourth dimension. Fungsi yang digunakan dalam melakukan perhitungan waktu berdasar detik, menit, jam, hari, bulan, dan tahun. Sinus Rumus =SINsudut dalam radian atau =SINRADIANS SUDUT Contoh Carilah nilai sinus dari sudut 0º, 30º, 45º, 60º, dan 90º..! Jawab Pada kolom Rumus, nilai A2, A3, dst diperoleh dengan cara meng-klik cell pada kolom Sudut º Cosinus Rumus =COS sudut dalam radian atau =COSRADIANSSUDUT Contoh Carilah nilai sinus dari sudut 0º, 30º, 45º, 60º, dan 90º..! Jawab Pada kolom Rumus, nilai A2, A3, dst diperoleh dengan cara meng-klik prison cell pada kolom Sudut º Tangen Rumus=TANsudut dalam radian atau =TAN RADIANSSUDUT Contoh Carilah nilai sinus dari sudut 0º, 30º, 45º, 60º, dan 90º..! Jawab Pada kolom Rumus, nilai A2, A3, dst diperoleh dengan cara meng-klik cell pada kolom Sudut º Nilai TAN 90º adalah takter definisi Cosecan Rumus =one/SIN sudutdalam radian atau =1/SIN RADIANSSUDUT Contoh Carilah nilai sinus dari sudut 0º, 30º, 45º, dan 90º..! Jawab Baca Juga Belah Ketupat Pada kolom Rumus, nilai A2, A3, dst diperoleh dengan cara meng-klik cell padakolom Sudut º Nilai COSEC 0º adalah takter definisi Secan Rumus =1/COSsudut dalam radian atau =i/COS RADIANSSUDUT Contoh Carilah nilai sinus dari sudut 0º, 30º, 45º, dan 90º..! Jawab Pada kolom Rumus, nilai A2, A3, dst diperoleh dengan cara meng-klik cell padakolom Sudut º Nilai SEC 90º adalah takter definisi Cotangen Rumus =one/TAN sudutdalam radian atau =1/TAN RADIANSSUDUT Contoh Carilah nilai sinus dari sudut 0º, 30º, 45º, dan 90º..! Jawab Padakolom Rumus, nilai A2, A3, dst diperoleh dengan cara meng-klik jail cell pada kolom Sudut º Nilai COT 90º adalah takter definisi Nilai Sin Cos Tan Untuk mengingatnya orang biasanya memakai SINDEMI, KOSAMI dan TANDESA sin theta = depan/miring SINDEMI kos theta = samping/miring KOSAMI tan theta = depan/samping TANDESA Baca Juga Keliling Lingkaran Sin 0° = 0 Sin 30° = 1/2 Sin 45° = ane/two √ii Sin 60° = 1/2 √3 Sin ninety° = ane Cos 0° = one Cos xxx° = 1/2 √3 Cos 45° = 1/2 √two Cos threescore° = 1/two Cos 90° = 0 Tan 0° = 0 Tan 30° = i/3 √3 Tan 45° = 1 Tan sixty° = √3 Tan 90° = ∞ Cosc A = 1/sin A Sec A = i/Cos A Cotg A = ane/Tg A Perhatikan skema berikut Langkah – langkah Menentukan kuadran sudut Mengubah sudut dalam bentuk yang bersesuaian. Kuadran Two 180 – a Kuadran III 180 + a Kuadran 4 360 – a Menentukan tanda -/+ nilai sin cos dan tan. Gunakan istilah“Semua Sudah Tau Caranya”. Artinya, sesuai urutan kuadran, kuadran I Semua positip, 2 hanya Sin postip, IIIhanya Tan positip, dan IV hanya Cos positip Catatan Semua langkah- langkah tersebut dirangkum dalam skema diatas. Contoh, akan ditentukan nilai Sin 150. Baca Juga Integral Trigonometri Menentukan kuadran sudut. Sudut 150 berada di kuadran Ii Mengubah sudut dalam bentuk yang bersesuaian Karena di kuadran Ii, sudut diubah dalam bentuk 180 – a, 150 = 180 – 30 Menentukan tanda -/+ Sin di kuadran Two bertanda + Sin 150 = sin 180 –30= + Sin 30 = 0,5 Jadi Sin 150 = 0,5 Lagi, akan ditentukan nilai Cos 210. Menentukan kuadran sudut. Sudut 210 berada di kuadran III Mengubah sudut dalam bentuk yang bersesuaian. Karena di kuadran Three, sudut diubah dalam bentuk 180 + a, 210 = 180 + thirty Menentukan tanda -/+ Cos di kuadran 3 bertanda - Sekian penjelasan artikel diatas semoga bermanfaat bagi pembaca setia Mungkin Dibawah Ini yang Kamu Butuhkan MatematikaTRIGONOMETRI Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih SudutRumus Jumlah dan Selisih SudutPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0508Jika sudut a dan b lancip, sin a=3/5 dan sin b=7/25, nila...0217Diketahui sin A+sin B=1 dan cos A + cos B=akar5/3, nila...0403Jika a + B = pi/4 dan cos a cos B = 3/4, maka cos a - B...0122Diketahui sin 24=p dan cos 24=q. Hasil dari tan 156 adal...Teks videoJika melihat sawah seperti ini langkah pertama harus kita lakukan adalah mengkuadratkan persamaannya Nah di sini pertama untuk Sin a + sin B = akar 5 per 3 kemudian ini kita kuadratkan kedua ruas berarti ini menjadi sebelumnya ingat ya ketika ada kuadratkan a. + b kuadrat ini akan menghasilkan a kuadrat + 2 ab + b kuadrat. Nah, Berarti yang ini Sin a + sin b kuadrat a sin kuadrat a kemudian Sin kuadrat per kita taruh depan Sin kuadrat P Lalu 2 dikali a dikali B berarti 2 Sin a sin B2 Sin a sin B = akar 5 akar 5 per 3 dikuadratkan berarti akar hilang ya jadi 5 per 3 lalu untuk yang kedua yaitu a ditambah cos b. = 1 kemudian kita kuadratkan menjadi cos kuadrat a ditambah dengan cos kuadrat B ditambah dengan 2 cos a cos b = 1 ini persamaan yang pertama ini persamaan yang kedua lalu kita jumlah pesanan 1 dan 2 Nah kita jumlah ya Sin kuadrat a ditambah dengan cos kuadrat a lalu Sin kuadratditambah dengan cos kuadrat B ini 2 Sin a sin B Sin B ditambah 2 cos a cos B + 5 per 3 + 1 menjadi 8 per 3 nah, kemudian perlu kita tahu ketika ada apa ditambah dengan kost Pondok Apa itu sama yang satu identitas trigono ya berarti jika Sin kuadrat a + cos kuadrat a berarti bernilai 1 Dan ini juga nilai 1 karena alfanya sama nah Berarti 1 + 1 kan 2 lalu di sini duanya kita keluarkan dan 22 dari 2 dikali dengan Sin a sin B + cos a cos B = 8 per 3 Lalu 2 disini kita pindahkan ke kanan dari 8 per 3 dikurang 2 menjadi 2 per 3 lalu kedua ruas kita bagi dua berarti kita coret-coret jadi satu ya Sehingga sini Sin a sin B ditambah dengan cos a cos b = 1 per 3 sesuai dengan penjabaran dari identitas trigonometri ketika ada cos A min b itu sama saja dengan cos a cos B + Sin a sin B cos a cos B + Sin a sin B nilainya 1 per 3 ini 1 per 3 sehingga nilai dari cos A = 1 per 3 jawabannya yang a oke sekian sampai jumpa di soal berikutnya Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih SudutRumus Jumlah dan Selisih SudutPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0508Jika sudut a dan b lancip, sin a=3/5 dan sin b=7/25, nila...0217Diketahui sin A+sin B=1 dan cos A + cos B=akar5/3, nila...0403Jika a + B = pi/4 dan cos a cos B = 3/4, maka cos a - B...0122Diketahui sin 24=p dan cos 24=q. Hasil dari tan 156 adal...Teks videoHalo Koppen pada soal diketahui Sin a + sin b = 1 dan cos a + cos B = akar pangkat 2 dari 5 per 3 yang ditanyakan nilai dari cos a dikurang B sudah tahu kan Salah satu sifat trigonometri di mana jika ada bentuk cos a dikurang B Maka hasilnya akan = cos a dikali cos B + Sin a * sin B untuk mendapatkan bentuk cos a dikali cos B + Sin a * sin B ini ya Yang mana nilainya = cos a dikurang B nah kita akan kuadrat Sin a + sin B dan cos a + cos B Masih ingatkah jika ada bentuk a + b dikuadratkan maka hasilnya akan sama dengan a kuadrat ditambah 2 X dikali B ditambah b kuadrat sehingga Sin a + sin B dikuadranitu = Sin kuadrat a + 2 * Sin a * sin B ya kemudian ditambah Sin kuadrat B kemudian cos a + cos B dikuadratkan itu = cos kuadrat a + 2 a dikali cos a * cos B + cos kuadrat B kemudian kita akan diberitahu di soal Jika nilai dari sin a + sin b = 1 maka nilai dari sin a + sin B dikuadratkan itu = 1 kuadrat 1 kuadrat itu = 1 ya berarti kongruen maka nilai dari cos a + cos B = akar pangkat 2 dari 5 per 3 maka nilai dari cos a + cos B dikuadratkan itu sama denganakar pangkat 2 dari 5 per 3 dikuadratkan naikkan berarti akan menjadi 5 per 3 akar pangkat 2 itu kan berarti pangkat setengah ya jadi dipangkatkan setengah ya kemudian dipangkatkan lagi dengan 2 nah cover Masih ingatkah jika ada bentuk pangkat m ya kemudian dipangkatkan n maka pangkatnya ini bisa di kali jadi = p ^ m dikali n ya maka 5 per 3 dipangkatkan 1/2 dipangkatkan 2 maka pangkatnya bisa di kali ini jadi = 5 per 3 pangkat 1 per 2 kali 2 nah 2 nya ini bisa dicoret ya dua sama dua nih bisa dicoret jadi sisanya = 5 per 3 maka nilai dari cos a + cos BKuadrat kan itu sama dengan 5 per 3 nah, kemudian kita jumlahkan ya nilai dari sin a + sin B dikuadratkan kita jumlahkan dengan nilai dari cos a + cos B dikuadratkan sehingga menjadi cos kuadrat a + sin kuadrat a + 2 dikali Sin a * sin B ditambah 2 dikali cos a dikali cos B + cos kuadrat B ditambah Sin kuadrat b = 1 + 5 per 31 itu kan sama dengan 3 atau 3 ya. Jadi penyebutnya disamakan ya dari 3 per 3 ditambah 5 per 3 = 8 per 3 nah disini kita mempunyai bentuk cos kuadrat a ditambah Sin kuadrat A dan cos kuadrat B ditambah Sin kuadrat B kita sudah tahu kan ada bentuk cos kuadrat x ditambah Sin kuadrat X ya maka nilainya akan = 1 maka disini cos kuadrat X + Sin kuadrat A nilainya sama dengan 1dan cos kuadrat B ditambah Sin kuadrat B nilainya juga sama dengan 1 lalu di sini ada 2 dikali Sin a * sin B dan 2 dikali cos a dikali cos b 2 nya bisa kita keluarin ya sehingga menjadi dua kali Sin a * sin B ditambah cos a * cos B ya jadi 2 nya kita keluarkan nah kemudian di sini tambah ya sini tambah di sini Tambah Nah kemudian Sin a * sin B + cos a dikali cos B itu merupakan bentuk dari cos A min b ya sehingga bisa kita Tuliskan juga ya 1 + 2 * a dikurang B ya Yang mana cos a dikurang B ini nilainya = Sin a dikali Sin B + cos a dikali cos B ya atau cos a dikali cos B + Sin a * sin B itu sama saja ya di pulauSama saja nah kemudian ditambah 1 sama dengan 8 per 3 sehingga 1 + 1 itu 2 ya. Jadi 2 ditambah 2 dikali cos a dikurang B itu sama dengan 8 per 3 kemudian 2 nya kita pindahkan ke ruas kanan jadi 2 * cos a dikurang B ya sama dengan 8 per 3 dikurang 2 jadi 2 * cos a dikurang B = 8 per 3 dikurang 2 kita samakan penyebutnya ya dua itu bukan berarti sama dengan 6 per 3 ya 6 per 3 itu sama dengan 2 kemudian 8 per 3 dikurang 6 per 3 = 2 per 3 Nah jadicos a dikurang B itu = 2 nya kita pindahkan ke ruas kanan menjadi 2 per 3 dikali 1 per 2 sehingga kita dapatkan nilai dari cos a dikurang B itu sama dengan 2 per 3 dikali 1 per 2 jadi 2 per 6 nah kemudian kita Sederhanakan ya kita bagi dua ya atas bawahnya sehingga kita dapatkan nilai dari cos a dikurang b = 1 per 3 jadi jawabannya adalah opsi yang sekian pembahasan soal kali ini sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih Sinus, Cosinus, TangentRumus Jumlah dan Selisih Sinus, Cosinus, TangentPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0306Nilai tan 75 adalah ....0055Nilai dari sin 315 adalah0245Jika 2 sin a cos b=sina+b+sina-b ...... 1 2 cos a s...0226Nilai dari -12sin165cos75 adalah . . . .Teks videoHalo friend di sini kita punya soal tentang trigonometri. Jika alfa + beta = 30 derajat lalu kita diberikan bahwa Sin Alfa cos beta = sepertiga kita tanya nilai dari cos X dengan Sin beta sebelumnya Maria kembali disini untuk rumus trigonometri berikut dimana untuk Sin dari a ditambah b. Dapat kita urai menjadi dikalikan dengan poros B ditambah dengan pos dikalikan dengan Sin b. Dalam kasus ini perhatikan bahwa kita dapat Tuliskan surat izin dari Alfa ditambah dengan beta = Sin Alfa dikalikan dengan cosinus dari Beta ditambah dengan cosinus dari Alfa dikalikan dengan Sin dari Beta sehingga disini berarti bahwa alfa + beta adalah 30 derajat berarti hindari alfa, + beta lain dari 30 derajat = sin Alfa cos beta yang sudah diberikan nilainya yaitu sepertiga dan disini kita tambahkan dengan cos Alfa dikalikan dengan Sin beta yang justru ditanyakan Di sini perlu diperhatikan bahwa nilai dari sin 30 derajat adalah setengah jadi kita punya bawa setengah = 1 per 3 ditambah dengan cosinus dari Alfa dikalikan dengan sinus dari Beta sehingga untuk cosinus Alfa dikalikan dengan dari Beta Tala ini adalah setengah yang kita kurangi dengan 1 per 3 berarti di sini kita dapati bahwa setengah dikurang 1 per 3 adalah 1 per 6 jadi nilai dari cos a * sin B + seperenam kita pilih opsi yang a sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

diketahui sin a cos b 1 3